半導体検出器を用いた X線CT装置のビーム幅測定について

産業医科大学病院

〇大石 芳貴

高山 愛菜

中上 晃一

渡邊 亮

小川 正人

背景

IEC60601-2-44「CT装置の基礎安全及び基本性能」において、X線出力は公称X線ビーム制限幅に対して選択可能な管電圧(kV)で放射線(X線)出力としてCTDI_{free air}を測定すると規定されている.

公称X線ビーム制限幅が実測値と異なる場合には、 装置間の線量比較に誤差を生じる恐れがあることから 正確なX線ビーム制限幅を把握することは重要である.

IP(CR)法によるビーム幅測定

I事前準備

CRの精度管理

デジタル特性曲線

システム感度の検証

IP入射線量に対する S値の直線性

注意事項

IP入射線量の減弱 IPのフェーディング効果 線質の影響 線量計の校正

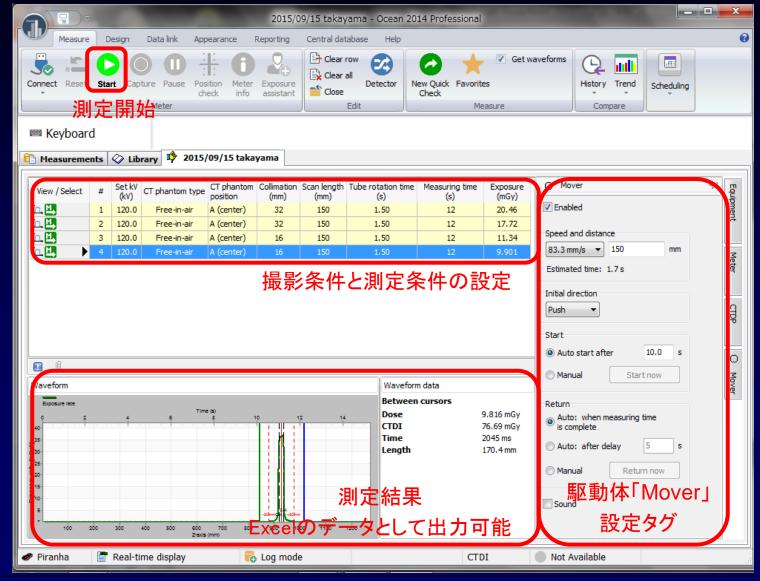
Ⅱ測定

手順の多さ、煩雑さが課題

第4回九州放射線医療技術学術大会 沖縄 第3回九州CT研究会 第5回九州放射線医療技術学術大会 熊本 第15回全国X線CT技術サミット 福岡(ポスター) 第4回九州CT研究会 にて報告

目的

新たな測定器であるCT Dose Profiler(CTDP)を用いたビーム幅測定の精度について評価し、過去に報告したIP(CR)法と比較を行った.


半導体検出器 CT Dose Profiler(CTDP)

- ヘリカル、ノンヘリカルの線量プロファイルが 取得可能
- ▶ 専用ソフトを用いるため各種補正が不要
- > 測定精度や校正についての報告はみられない

CT Dose Profiler

専用ソフト Ocean 操作画面

検討項目

- 1. 直線性
- 2. 線量依存性
- 3. 線質依存性
- 4. 再現性
- 5. IP(CR)法との比較

使用機器および機材

CT装置: Aquilion ONE (東芝メディカルシステムズ株式会社)

CTDPによる測定

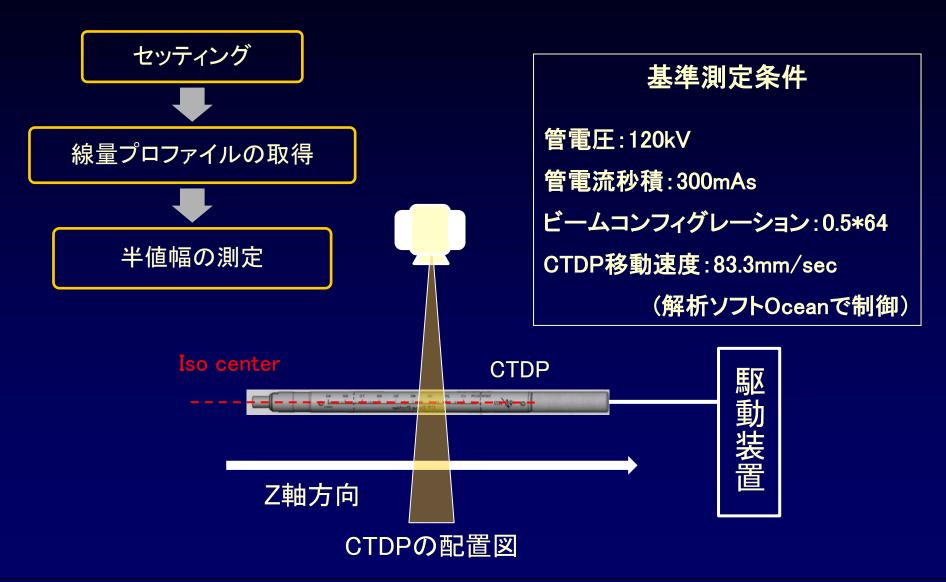
半導体検出器: CT Dose Profiler(アクロバイオ株式会社)

解析ソフト: Ocean(アクロバイオ株式会社)

Microsoft Excel(マイクロソフト)

IP(CR)法による測定

CR装置: FCR, Imaging Plate (富士フイルム株式会社)


半導体検出器: Piranha(アクロバイオ株式会社)

解析ソフト: ImageJ(National Institutes of Health)

Microsoft Excel(マイクロソフト)

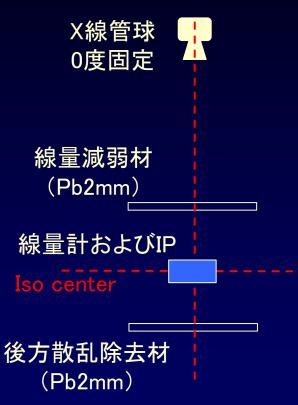
その他:2mm厚のPb板

CTDPによるビーム幅の測定手順

方法

①直線性

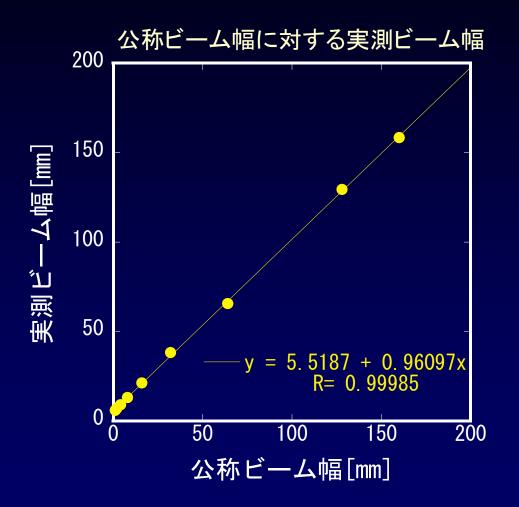
ビーム幅を変えて測定し、公称値との直線性を見た 0.5*2, 0.5*4, 0.5*8, 0. 5*16, 0.5*32, 0.5*64, 0.5*128, 0.5*256, 0.5*320 mm


- ②線量依存性管電流秒積を変えて測定した15mAs, 150mAs, 300mAs, 525mAs
- ③線質依存性 管電圧を変えて測定した 80kV, 100kV, 120kV, 135kV

方法

- ④再現性 日を変えて3回測定し、3回測定の変動率を求めた.
- ⑤IP(CR)法との比較 IP(CR)法でビーム幅を測定し、CTDPで測定したビーム幅と比較した。また、それぞれの測定時間をストップウォッチで計測した。

IP法によるビーム幅の測定手順

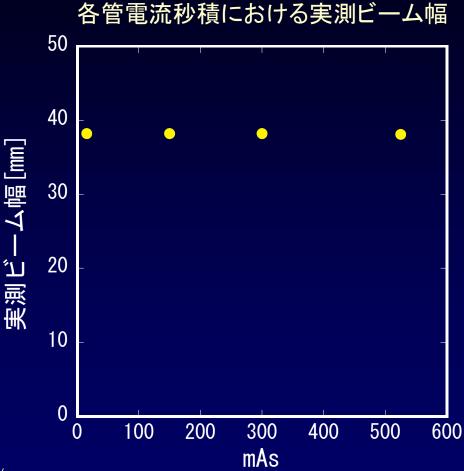

注意事項

IP入射線量の減弱 IPのフェーディング効果 線質の影響 線量計の校正

幾何学的配置図

結果1 直線性

公称ビーム幅	実測ビーム幅
0.5×2	6.01
0.5 × 4	6.96
0.5 × 8	9.08
0.5 × 16	13.05
0.5×32	21.33
0.5×64	38.22
0.5 × 128	65.71
0.5 × 256	129.52
0.5 × 320	158.59
	[mm]

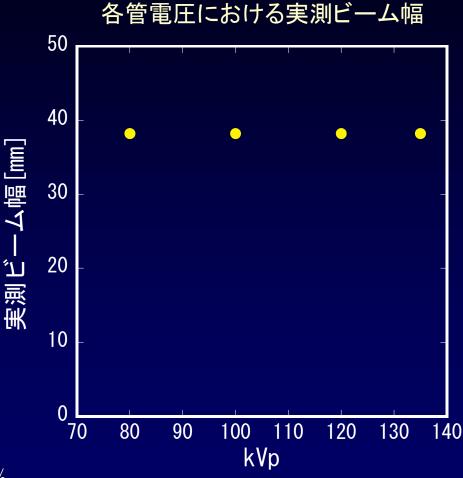


結果2 線量依存性

管電流秒積 [mAs]	実測ビーム幅 [mm]
15	38.23
150	38.21
300	38.20
525	38.14
変動率	0.10%

<u>ビームコンフィグレーション:0.5*64</u>

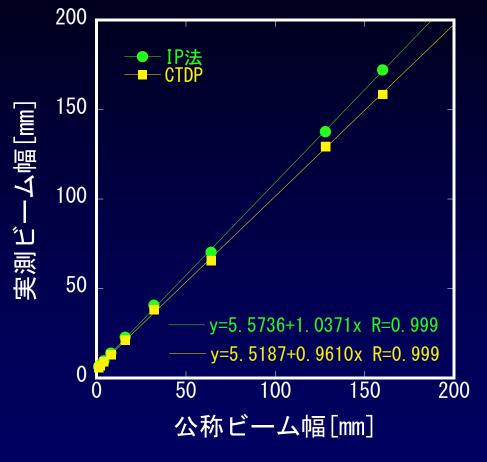
変動率=標準偏差/平均值×100%



結果3線質依存性

管電圧 [kVp]	実測ビーム幅 [mm]
80	38.22
100	38.21
120	38.20
135	38.24
変動率	0.04%

ビームコンフィグレーション: 0.5*64


結果4 再現性

公称ビーム幅	1st	2nd	3rd	平均	変動率
0.5×2	6.01	6.11	6.00	6.04	1.0%
0.5×4	6.96	6.96	6.99	6.97	0.3%
0.5×8	9.08	9.04	9.17	9.10	0.8%
0.5×16	13.05	13.01	13.04	13.03	0.2%
0.5×32	21.33	21.29	21.39	21.34	0.2%
0.5×64	38.22	38.16	38.20	38.19	0.1%
0.5×128	65.71	65.54	65.73	65.66	0.2%
0.5×256	129.52	129.28	128.96	129.26	0.2%
0.5×320	158.59	158.70	158.23	158.50	0.2%

変動率=標準偏差/平均值×100%

結果5 IP(CR)法との比較

公称ビーム幅	CTDP	IP
0.5×2	6.01	6.31
0.5 × 4	6.96	7.31
0.5×8	9.08	9.52
0.5×16	13.05	13.84
0.5 × 32	21.33	22.75
0.5 × 64	38.22	40.62
0.5×128	65.71	70.23
0.5 × 256	129.52	137.71
0.5×320	158.59	172.27

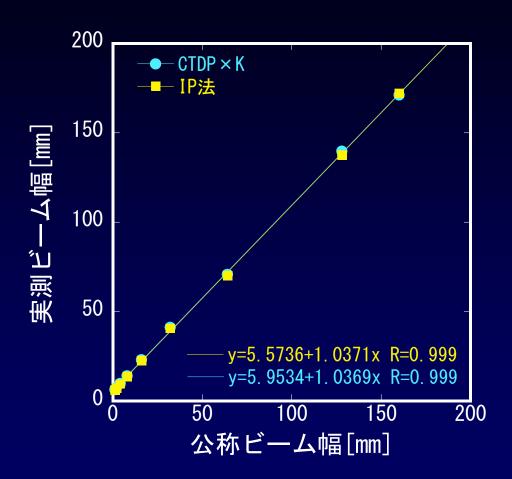
[mm]

近似曲線の傾きの比

IP(CR)法: CTDP = 1.079:1

CTDPとIP(CR)法の測定時間

	CTDP 分): 秒	IP(CR)法	分:秒
	セッティング 12	2:14	セッティング	15:03
	線量プロファイルの取得 20	0:47	デジタル特性曲線の作成	34:56
測定手順	半値幅の測定 5	:03	▼ X線ビームの撮影	23:11
			デジタルプロファイル取得	4:07
			線量プロファイルへの変換	3:25
			半値幅の測定	4:39
測定時間	38分04秒		85分21秒	


考察

CTDPで測定したビーム幅はIP(CR)法と比較して異なっていた。

公称ビーム幅に対する実測値の直線性は両者とも良好であったことから、傾きの比を乗ずることで補正できると考える.

測定値の補正

傾き係数
$$K = \frac{IP}{CTDP} = 1.079$$

結語

CTDPを用いたビーム幅測定は良好な直線性、かつ線量および線質依存性も小さく、高い再現性を示した。

校正値がないCTDPはIP(CR)法で校正することで、簡便で精度良いビーム幅測定が可能となった。